Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems.

Identifieur interne : 001013 ( Main/Exploration ); précédent : 001012; suivant : 001014

Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems.

Auteurs : Q A Sun [États-Unis] ; L. Kirnarsky ; S. Sherman ; V N Gladyshev

Source :

RBID : pubmed:11259642

Descripteurs français

English descriptors

Abstract

Thioredoxin (Trx) and glutathione (GSH) systems are considered to be two major redox systems in animal cells. They are reduced by NADPH via Trx reductase (TR) or oxidized GSH (GSSG) reductase and further supply electrons for deoxyribonucleotide synthesis, antioxidant defense, and redox regulation of signal transduction, transcription, cell growth, and apoptosis. We cloned and characterized a pyridine nucleotide disulfide oxidoreductase, Trx and GSSG reductase (TGR), that exhibits specificity for both redox systems. This enzyme contains a selenocysteine residue encoded by the TGA codon. TGR can reduce Trx, GSSG, and a GSH-linked disulfide in in vitro assays. This unusual substrate specificity is achieved by an evolutionary conserved fusion of the TR and glutaredoxin domains. These observations, together with the biochemical probing and molecular modeling of the TGR structure, suggest a mechanism whereby the C-terminal selenotetrapeptide serves a role of a protein-linked GSSG and shuttles electrons from the disulfide center within the TR domain to either the glutaredoxin domain or Trx.

DOI: 10.1073/pnas.051454398
PubMed: 11259642
PubMed Central: PMC31110


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems.</title>
<author>
<name sortKey="Sun, Q A" sort="Sun, Q A" uniqKey="Sun Q" first="Q A" last="Sun">Q A Sun</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664</wicri:regionArea>
<placeName>
<region type="state">Nebraska</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kirnarsky, L" sort="Kirnarsky, L" uniqKey="Kirnarsky L" first="L" last="Kirnarsky">L. Kirnarsky</name>
</author>
<author>
<name sortKey="Sherman, S" sort="Sherman, S" uniqKey="Sherman S" first="S" last="Sherman">S. Sherman</name>
</author>
<author>
<name sortKey="Gladyshev, V N" sort="Gladyshev, V N" uniqKey="Gladyshev V" first="V N" last="Gladyshev">V N Gladyshev</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11259642</idno>
<idno type="pmid">11259642</idno>
<idno type="doi">10.1073/pnas.051454398</idno>
<idno type="pmc">PMC31110</idno>
<idno type="wicri:Area/Main/Corpus">001037</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001037</idno>
<idno type="wicri:Area/Main/Curation">001037</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001037</idno>
<idno type="wicri:Area/Main/Exploration">001037</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems.</title>
<author>
<name sortKey="Sun, Q A" sort="Sun, Q A" uniqKey="Sun Q" first="Q A" last="Sun">Q A Sun</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664</wicri:regionArea>
<placeName>
<region type="state">Nebraska</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kirnarsky, L" sort="Kirnarsky, L" uniqKey="Kirnarsky L" first="L" last="Kirnarsky">L. Kirnarsky</name>
</author>
<author>
<name sortKey="Sherman, S" sort="Sherman, S" uniqKey="Sherman S" first="S" last="Sherman">S. Sherman</name>
</author>
<author>
<name sortKey="Gladyshev, V N" sort="Gladyshev, V N" uniqKey="Gladyshev V" first="V N" last="Gladyshev">V N Gladyshev</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Reductase (MeSH)</term>
<term>Male (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>NADH, NADPH Oxidoreductases (chemistry)</term>
<term>NADH, NADPH Oxidoreductases (genetics)</term>
<term>NADH, NADPH Oxidoreductases (metabolism)</term>
<term>Protein Conformation (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Testis (enzymology)</term>
<term>Testis (metabolism)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glutathion (métabolisme)</term>
<term>Glutathione reductase (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>NADH, NADPH oxidoreductases (composition chimique)</term>
<term>NADH, NADPH oxidoreductases (génétique)</term>
<term>NADH, NADPH oxidoreductases (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Testicule (enzymologie)</term>
<term>Testicule (métabolisme)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>NADH, NADPH Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>NADH, NADPH Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>NADH, NADPH Oxidoreductases</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>NADH, NADPH oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Testicule</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Testis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>NADH, NADPH oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Testis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathion</term>
<term>NADH, NADPH oxidoreductases</term>
<term>Testicule</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cloning, Molecular</term>
<term>Glutathione Reductase</term>
<term>Male</term>
<term>Mice</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Protein Conformation</term>
<term>Sequence Homology, Amino Acid</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Clonage moléculaire</term>
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Glutathione reductase</term>
<term>Modèles moléculaires</term>
<term>Mâle</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Souris</term>
<term>Spécificité du substrat</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thioredoxin (Trx) and glutathione (GSH) systems are considered to be two major redox systems in animal cells. They are reduced by NADPH via Trx reductase (TR) or oxidized GSH (GSSG) reductase and further supply electrons for deoxyribonucleotide synthesis, antioxidant defense, and redox regulation of signal transduction, transcription, cell growth, and apoptosis. We cloned and characterized a pyridine nucleotide disulfide oxidoreductase, Trx and GSSG reductase (TGR), that exhibits specificity for both redox systems. This enzyme contains a selenocysteine residue encoded by the TGA codon. TGR can reduce Trx, GSSG, and a GSH-linked disulfide in in vitro assays. This unusual substrate specificity is achieved by an evolutionary conserved fusion of the TR and glutaredoxin domains. These observations, together with the biochemical probing and molecular modeling of the TGR structure, suggest a mechanism whereby the C-terminal selenotetrapeptide serves a role of a protein-linked GSSG and shuttles electrons from the disulfide center within the TR domain to either the glutaredoxin domain or Trx.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11259642</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>05</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>01</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>98</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2001</Year>
<Month>Mar</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems.</ArticleTitle>
<Pagination>
<MedlinePgn>3673-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Thioredoxin (Trx) and glutathione (GSH) systems are considered to be two major redox systems in animal cells. They are reduced by NADPH via Trx reductase (TR) or oxidized GSH (GSSG) reductase and further supply electrons for deoxyribonucleotide synthesis, antioxidant defense, and redox regulation of signal transduction, transcription, cell growth, and apoptosis. We cloned and characterized a pyridine nucleotide disulfide oxidoreductase, Trx and GSSG reductase (TGR), that exhibits specificity for both redox systems. This enzyme contains a selenocysteine residue encoded by the TGA codon. TGR can reduce Trx, GSSG, and a GSH-linked disulfide in in vitro assays. This unusual substrate specificity is achieved by an evolutionary conserved fusion of the TR and glutaredoxin domains. These observations, together with the biochemical probing and molecular modeling of the TGR structure, suggest a mechanism whereby the C-terminal selenotetrapeptide serves a role of a protein-linked GSSG and shuttles electrons from the disulfide center within the TR domain to either the glutaredoxin domain or Trx.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Q A</ForeName>
<Initials>QA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kirnarsky</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sherman</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gladyshev</LastName>
<ForeName>V N</ForeName>
<Initials>VN</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AF349659</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 CA036727</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM061603</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM60603</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 CA36727</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2001</Year>
<Month>03</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.-</RegistryNumber>
<NameOfSubstance UI="D009247">NADH, NADPH Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.7</RegistryNumber>
<NameOfSubstance UI="D005980">Glutathione Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="C424443">Txnrd3 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005980" MajorTopicYN="N">Glutathione Reductase</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009247" MajorTopicYN="N">NADH, NADPH Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013737" MajorTopicYN="N">Testis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11259642</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.051454398</ArticleId>
<ArticleId IdType="pii">051454398</ArticleId>
<ArticleId IdType="pmc">PMC31110</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Mar 16;269(2):366-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10708558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 1999 Oct;31(4):261-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10517532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 23;97(11):5854-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6356-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10841544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jun 16;275(24):18121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Jun 30;476(1-2):52-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10878249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jul 7;275(27):20346-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10751410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1979;63:138-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">502858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1981;73(Pt B):442-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7029205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1981;77:281-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7329306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1982 Jun 25;257(12):6686-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7045093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1985;113:484-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3003504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1988 Aug;46(3):470-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3181166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1988 Dec;175(2):408-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3239770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1990;182:225-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2314238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Jul 11;352(6331):168-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2067577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Jul 11;352(6331):172-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2067578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Sep 10;30(36):8883-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1888746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1992 Oct;298(1):247-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1524433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1995 Oct;9(13):1267-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7557016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1995 Jun;16(5):921-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6146-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8650234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1996;65:83-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8811175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3621-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9108027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1998 Jun 1;332 ( Pt 2):591-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9679027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Oct 20;251(2):488-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9792801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Nov 17;37(46):16378-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9819230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 Nov 27;440(1-2):111-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9862437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1999;300:226-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9919525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Jan 8;442(1):105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9923614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Feb 19;274(8):4722-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9988709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Mar 5;274(10):6366-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10037727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Mar 9;38(10):3187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1999 Nov;27(9-10):916-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10569624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1999 Nov;27(9-10):951-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10569628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Dec;19(12):8180-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2000 Feb 15;346 Pt 1:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10657232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Mar 23;38(12):3519-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10090738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1999 Apr;261(2):405-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10215850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Mol Med. 1999 Jun 30;31(2):53-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10410302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1999 Aug;264(1):74-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10447675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Aug 27;274(35):24522-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10455115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Sep 3;274(36):25379-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10464265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2521-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10688911</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Nebraska</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Gladyshev, V N" sort="Gladyshev, V N" uniqKey="Gladyshev V" first="V N" last="Gladyshev">V N Gladyshev</name>
<name sortKey="Kirnarsky, L" sort="Kirnarsky, L" uniqKey="Kirnarsky L" first="L" last="Kirnarsky">L. Kirnarsky</name>
<name sortKey="Sherman, S" sort="Sherman, S" uniqKey="Sherman S" first="S" last="Sherman">S. Sherman</name>
</noCountry>
<country name="États-Unis">
<region name="Nebraska">
<name sortKey="Sun, Q A" sort="Sun, Q A" uniqKey="Sun Q" first="Q A" last="Sun">Q A Sun</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001013 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001013 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11259642
   |texte=   Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11259642" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020